3.111 \(\int \frac{A+B x^2}{x^4 (a+b x^2+c x^4)} \, dx\)

Optimal. Leaf size=271 \[ -\frac{\sqrt{c} \left (a B \left (\sqrt{b^2-4 a c}+b\right )-A \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (a B \left (b-\sqrt{b^2-4 a c}\right )-A \left (-b \sqrt{b^2-4 a c}-2 a c+b^2\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 \sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{A b-a B}{a^2 x}-\frac{A}{3 a x^3} \]

[Out]

-A/(3*a*x^3) + (A*b - a*B)/(a^2*x) - (Sqrt[c]*(a*B*(b + Sqrt[b^2 - 4*a*c]) - A*(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a
*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^
2 - 4*a*c]]) + (Sqrt[c]*(a*B*(b - Sqrt[b^2 - 4*a*c]) - A*(b^2 - 2*a*c - b*Sqrt[b^2 - 4*a*c]))*ArcTan[(Sqrt[2]*
Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.652712, antiderivative size = 271, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {1281, 1166, 205} \[ -\frac{\sqrt{c} \left (a B \left (\sqrt{b^2-4 a c}+b\right )-A \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (a B \left (b-\sqrt{b^2-4 a c}\right )-A \left (-b \sqrt{b^2-4 a c}-2 a c+b^2\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 \sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{A b-a B}{a^2 x}-\frac{A}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

-A/(3*a*x^3) + (A*b - a*B)/(a^2*x) - (Sqrt[c]*(a*B*(b + Sqrt[b^2 - 4*a*c]) - A*(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a
*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^
2 - 4*a*c]]) + (Sqrt[c]*(a*B*(b - Sqrt[b^2 - 4*a*c]) - A*(b^2 - 2*a*c - b*Sqrt[b^2 - 4*a*c]))*ArcTan[(Sqrt[2]*
Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1281

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(
f*x)^(m + 1)*(a + b*x^2 + c*x^4)^(p + 1))/(a*f*(m + 1)), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
 e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B x^2}{x^4 \left (a+b x^2+c x^4\right )} \, dx &=-\frac{A}{3 a x^3}-\frac{\int \frac{3 (A b-a B)+3 A c x^2}{x^2 \left (a+b x^2+c x^4\right )} \, dx}{3 a}\\ &=-\frac{A}{3 a x^3}+\frac{A b-a B}{a^2 x}+\frac{\int \frac{3 \left (A b^2-a b B-a A c\right )+3 (A b-a B) c x^2}{a+b x^2+c x^4} \, dx}{3 a^2}\\ &=-\frac{A}{3 a x^3}+\frac{A b-a B}{a^2 x}+\frac{\left (c \left (a B \left (b-\sqrt{b^2-4 a c}\right )-A \left (b^2-2 a c-b \sqrt{b^2-4 a c}\right )\right )\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 a^2 \sqrt{b^2-4 a c}}-\frac{\left (c \left (a B \left (b+\sqrt{b^2-4 a c}\right )-A \left (b^2-2 a c+b \sqrt{b^2-4 a c}\right )\right )\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 a^2 \sqrt{b^2-4 a c}}\\ &=-\frac{A}{3 a x^3}+\frac{A b-a B}{a^2 x}-\frac{\sqrt{c} \left (a B \left (b+\sqrt{b^2-4 a c}\right )-A \left (b^2-2 a c+b \sqrt{b^2-4 a c}\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (a B \left (b-\sqrt{b^2-4 a c}\right )-A \left (b^2-2 a c-b \sqrt{b^2-4 a c}\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b^2-4 a c} \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.329353, size = 267, normalized size = 0.99 \[ \frac{-\frac{3 \sqrt{2} \sqrt{c} \left (a B \left (\sqrt{b^2-4 a c}+b\right )-A \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \sqrt{2} \sqrt{c} \left (A \left (b \sqrt{b^2-4 a c}+2 a c-b^2\right )+a B \left (b-\sqrt{b^2-4 a c}\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{6 A b-6 a B}{x}-\frac{2 a A}{x^3}}{6 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

((-2*a*A)/x^3 + (6*A*b - 6*a*B)/x - (3*Sqrt[2]*Sqrt[c]*(a*B*(b + Sqrt[b^2 - 4*a*c]) - A*(b^2 - 2*a*c + b*Sqrt[
b^2 - 4*a*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 -
 4*a*c]]) + (3*Sqrt[2]*Sqrt[c]*(a*B*(b - Sqrt[b^2 - 4*a*c]) + A*(-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c]))*ArcTan[(
Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(6*a^2)

________________________________________________________________________________________

Maple [B]  time = 0.025, size = 611, normalized size = 2.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/x^4/(c*x^4+b*x^2+a),x)

[Out]

-1/2/a^2*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*
b+1/a*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(
1/2))*c)^(1/2))*A-1/2/a^2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/(
(-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b^2+1/2/a*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/
((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*B+1/2/a*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arct
anh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*B+1/2/a^2*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arct
an(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b+1/a*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2)
)*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A-1/2/a^2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4
*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b^2-1/2/a*c*2^(1/2)/((b+(-4*a
*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*B+1/2/a*c/(-4*a*c+b^2)^(1/2)*2^(1
/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*B-1/3*A/a/x^3+1/a^
2/x*A*b-1/a/x*B

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{-\int \frac{{\left (B a - A b\right )} c x^{2} + B a b - A b^{2} + A a c}{c x^{4} + b x^{2} + a}\,{d x}}{a^{2}} - \frac{3 \,{\left (B a - A b\right )} x^{2} + A a}{3 \, a^{2} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^4/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(-((B*a - A*b)*c*x^2 + B*a*b - A*b^2 + A*a*c)/(c*x^4 + b*x^2 + a), x)/a^2 - 1/3*(3*(B*a - A*b)*x^2 +
A*a)/(a^2*x^3)

________________________________________________________________________________________

Fricas [B]  time = 10.1844, size = 10842, normalized size = 40.01 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^4/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

1/6*(3*sqrt(1/2)*a^2*x^3*sqrt(-(B^2*a^2*b^3 - 2*A*B*a*b^4 + A^2*b^5 - (4*A*B*a^3 - 5*A^2*a^2*b)*c^2 - (3*B^2*a
^3*b - 8*A*B*a^2*b^2 + 5*A^2*a*b^3)*c + (a^5*b^2 - 4*a^6*c)*sqrt((B^4*a^4*b^4 - 4*A*B^3*a^3*b^5 + 6*A^2*B^2*a^
2*b^6 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4*a^4*c^4 - 2*(A^2*B^2*a^5 - 4*A^3*B*a^4*b + 3*A^4*a^3*b^2)*c^3 + (B^4*a^6
 - 8*A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2 - 28*A^3*B*a^3*b^3 + 11*A^4*a^2*b^4)*c^2 - 2*(B^4*a^5*b^2 - 6*A*B^3*a^4*
b^3 + 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a^2*b^5 + 3*A^4*a*b^6)*c)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log
(2*(A^4*a^2*c^5 + 3*(A^3*B*a^2*b - A^4*a*b^2)*c^4 - (B^4*a^4 - 5*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - A^3*B*a*b^3
 - A^4*b^4)*c^3 + (B^4*a^3*b^2 - 3*A*B^3*a^2*b^3 + 3*A^2*B^2*a*b^4 - A^3*B*b^5)*c^2)*x + sqrt(1/2)*(B^3*a^3*b^
5 - 3*A*B^2*a^2*b^6 + 3*A^2*B*a*b^7 - A^3*b^8 - 4*A^3*a^4*c^4 + (4*A*B^2*a^5 - 20*A^2*B*a^4*b + 17*A^3*a^3*b^2
)*c^3 + (4*B^3*a^5*b - 25*A*B^2*a^4*b^2 + 41*A^2*B*a^3*b^3 - 20*A^3*a^2*b^4)*c^2 - (5*B^3*a^4*b^3 - 18*A*B^2*a
^3*b^4 + 21*A^2*B*a^2*b^5 - 8*A^3*a*b^6)*c - (B*a^6*b^4 - A*a^5*b^5 + 4*(2*B*a^8 - 3*A*a^7*b)*c^2 - (6*B*a^7*b
^2 - 7*A*a^6*b^3)*c)*sqrt((B^4*a^4*b^4 - 4*A*B^3*a^3*b^5 + 6*A^2*B^2*a^2*b^6 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4*a
^4*c^4 - 2*(A^2*B^2*a^5 - 4*A^3*B*a^4*b + 3*A^4*a^3*b^2)*c^3 + (B^4*a^6 - 8*A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2 -
 28*A^3*B*a^3*b^3 + 11*A^4*a^2*b^4)*c^2 - 2*(B^4*a^5*b^2 - 6*A*B^3*a^4*b^3 + 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a^2
*b^5 + 3*A^4*a*b^6)*c)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(B^2*a^2*b^3 - 2*A*B*a*b^4 + A^2*b^5 - (4*A*B*a^3 - 5*A^2
*a^2*b)*c^2 - (3*B^2*a^3*b - 8*A*B*a^2*b^2 + 5*A^2*a*b^3)*c + (a^5*b^2 - 4*a^6*c)*sqrt((B^4*a^4*b^4 - 4*A*B^3*
a^3*b^5 + 6*A^2*B^2*a^2*b^6 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4*a^4*c^4 - 2*(A^2*B^2*a^5 - 4*A^3*B*a^4*b + 3*A^4*a
^3*b^2)*c^3 + (B^4*a^6 - 8*A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2 - 28*A^3*B*a^3*b^3 + 11*A^4*a^2*b^4)*c^2 - 2*(B^4*
a^5*b^2 - 6*A*B^3*a^4*b^3 + 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a^2*b^5 + 3*A^4*a*b^6)*c)/(a^10*b^2 - 4*a^11*c)))/(a
^5*b^2 - 4*a^6*c))) - 3*sqrt(1/2)*a^2*x^3*sqrt(-(B^2*a^2*b^3 - 2*A*B*a*b^4 + A^2*b^5 - (4*A*B*a^3 - 5*A^2*a^2*
b)*c^2 - (3*B^2*a^3*b - 8*A*B*a^2*b^2 + 5*A^2*a*b^3)*c + (a^5*b^2 - 4*a^6*c)*sqrt((B^4*a^4*b^4 - 4*A*B^3*a^3*b
^5 + 6*A^2*B^2*a^2*b^6 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4*a^4*c^4 - 2*(A^2*B^2*a^5 - 4*A^3*B*a^4*b + 3*A^4*a^3*b^
2)*c^3 + (B^4*a^6 - 8*A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2 - 28*A^3*B*a^3*b^3 + 11*A^4*a^2*b^4)*c^2 - 2*(B^4*a^5*b
^2 - 6*A*B^3*a^4*b^3 + 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a^2*b^5 + 3*A^4*a*b^6)*c)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^
2 - 4*a^6*c))*log(2*(A^4*a^2*c^5 + 3*(A^3*B*a^2*b - A^4*a*b^2)*c^4 - (B^4*a^4 - 5*A*B^3*a^3*b + 6*A^2*B^2*a^2*
b^2 - A^3*B*a*b^3 - A^4*b^4)*c^3 + (B^4*a^3*b^2 - 3*A*B^3*a^2*b^3 + 3*A^2*B^2*a*b^4 - A^3*B*b^5)*c^2)*x - sqrt
(1/2)*(B^3*a^3*b^5 - 3*A*B^2*a^2*b^6 + 3*A^2*B*a*b^7 - A^3*b^8 - 4*A^3*a^4*c^4 + (4*A*B^2*a^5 - 20*A^2*B*a^4*b
 + 17*A^3*a^3*b^2)*c^3 + (4*B^3*a^5*b - 25*A*B^2*a^4*b^2 + 41*A^2*B*a^3*b^3 - 20*A^3*a^2*b^4)*c^2 - (5*B^3*a^4
*b^3 - 18*A*B^2*a^3*b^4 + 21*A^2*B*a^2*b^5 - 8*A^3*a*b^6)*c - (B*a^6*b^4 - A*a^5*b^5 + 4*(2*B*a^8 - 3*A*a^7*b)
*c^2 - (6*B*a^7*b^2 - 7*A*a^6*b^3)*c)*sqrt((B^4*a^4*b^4 - 4*A*B^3*a^3*b^5 + 6*A^2*B^2*a^2*b^6 - 4*A^3*B*a*b^7
+ A^4*b^8 + A^4*a^4*c^4 - 2*(A^2*B^2*a^5 - 4*A^3*B*a^4*b + 3*A^4*a^3*b^2)*c^3 + (B^4*a^6 - 8*A*B^3*a^5*b + 24*
A^2*B^2*a^4*b^2 - 28*A^3*B*a^3*b^3 + 11*A^4*a^2*b^4)*c^2 - 2*(B^4*a^5*b^2 - 6*A*B^3*a^4*b^3 + 12*A^2*B^2*a^3*b
^4 - 10*A^3*B*a^2*b^5 + 3*A^4*a*b^6)*c)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(B^2*a^2*b^3 - 2*A*B*a*b^4 + A^2*b^5 - (
4*A*B*a^3 - 5*A^2*a^2*b)*c^2 - (3*B^2*a^3*b - 8*A*B*a^2*b^2 + 5*A^2*a*b^3)*c + (a^5*b^2 - 4*a^6*c)*sqrt((B^4*a
^4*b^4 - 4*A*B^3*a^3*b^5 + 6*A^2*B^2*a^2*b^6 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4*a^4*c^4 - 2*(A^2*B^2*a^5 - 4*A^3*
B*a^4*b + 3*A^4*a^3*b^2)*c^3 + (B^4*a^6 - 8*A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2 - 28*A^3*B*a^3*b^3 + 11*A^4*a^2*b
^4)*c^2 - 2*(B^4*a^5*b^2 - 6*A*B^3*a^4*b^3 + 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a^2*b^5 + 3*A^4*a*b^6)*c)/(a^10*b^2
 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) + 3*sqrt(1/2)*a^2*x^3*sqrt(-(B^2*a^2*b^3 - 2*A*B*a*b^4 + A^2*b^5 - (4*A*B
*a^3 - 5*A^2*a^2*b)*c^2 - (3*B^2*a^3*b - 8*A*B*a^2*b^2 + 5*A^2*a*b^3)*c - (a^5*b^2 - 4*a^6*c)*sqrt((B^4*a^4*b^
4 - 4*A*B^3*a^3*b^5 + 6*A^2*B^2*a^2*b^6 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4*a^4*c^4 - 2*(A^2*B^2*a^5 - 4*A^3*B*a^4
*b + 3*A^4*a^3*b^2)*c^3 + (B^4*a^6 - 8*A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2 - 28*A^3*B*a^3*b^3 + 11*A^4*a^2*b^4)*c
^2 - 2*(B^4*a^5*b^2 - 6*A*B^3*a^4*b^3 + 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a^2*b^5 + 3*A^4*a*b^6)*c)/(a^10*b^2 - 4*
a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(A^4*a^2*c^5 + 3*(A^3*B*a^2*b - A^4*a*b^2)*c^4 - (B^4*a^4 - 5*A*B^3*a^3*b
 + 6*A^2*B^2*a^2*b^2 - A^3*B*a*b^3 - A^4*b^4)*c^3 + (B^4*a^3*b^2 - 3*A*B^3*a^2*b^3 + 3*A^2*B^2*a*b^4 - A^3*B*b
^5)*c^2)*x + sqrt(1/2)*(B^3*a^3*b^5 - 3*A*B^2*a^2*b^6 + 3*A^2*B*a*b^7 - A^3*b^8 - 4*A^3*a^4*c^4 + (4*A*B^2*a^5
 - 20*A^2*B*a^4*b + 17*A^3*a^3*b^2)*c^3 + (4*B^3*a^5*b - 25*A*B^2*a^4*b^2 + 41*A^2*B*a^3*b^3 - 20*A^3*a^2*b^4)
*c^2 - (5*B^3*a^4*b^3 - 18*A*B^2*a^3*b^4 + 21*A^2*B*a^2*b^5 - 8*A^3*a*b^6)*c + (B*a^6*b^4 - A*a^5*b^5 + 4*(2*B
*a^8 - 3*A*a^7*b)*c^2 - (6*B*a^7*b^2 - 7*A*a^6*b^3)*c)*sqrt((B^4*a^4*b^4 - 4*A*B^3*a^3*b^5 + 6*A^2*B^2*a^2*b^6
 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4*a^4*c^4 - 2*(A^2*B^2*a^5 - 4*A^3*B*a^4*b + 3*A^4*a^3*b^2)*c^3 + (B^4*a^6 - 8*
A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2 - 28*A^3*B*a^3*b^3 + 11*A^4*a^2*b^4)*c^2 - 2*(B^4*a^5*b^2 - 6*A*B^3*a^4*b^3 +
 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a^2*b^5 + 3*A^4*a*b^6)*c)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(B^2*a^2*b^3 - 2*A*B*a*
b^4 + A^2*b^5 - (4*A*B*a^3 - 5*A^2*a^2*b)*c^2 - (3*B^2*a^3*b - 8*A*B*a^2*b^2 + 5*A^2*a*b^3)*c - (a^5*b^2 - 4*a
^6*c)*sqrt((B^4*a^4*b^4 - 4*A*B^3*a^3*b^5 + 6*A^2*B^2*a^2*b^6 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4*a^4*c^4 - 2*(A^2
*B^2*a^5 - 4*A^3*B*a^4*b + 3*A^4*a^3*b^2)*c^3 + (B^4*a^6 - 8*A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2 - 28*A^3*B*a^3*b
^3 + 11*A^4*a^2*b^4)*c^2 - 2*(B^4*a^5*b^2 - 6*A*B^3*a^4*b^3 + 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a^2*b^5 + 3*A^4*a*
b^6)*c)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) - 3*sqrt(1/2)*a^2*x^3*sqrt(-(B^2*a^2*b^3 - 2*A*B*a*b^4 +
 A^2*b^5 - (4*A*B*a^3 - 5*A^2*a^2*b)*c^2 - (3*B^2*a^3*b - 8*A*B*a^2*b^2 + 5*A^2*a*b^3)*c - (a^5*b^2 - 4*a^6*c)
*sqrt((B^4*a^4*b^4 - 4*A*B^3*a^3*b^5 + 6*A^2*B^2*a^2*b^6 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4*a^4*c^4 - 2*(A^2*B^2*
a^5 - 4*A^3*B*a^4*b + 3*A^4*a^3*b^2)*c^3 + (B^4*a^6 - 8*A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2 - 28*A^3*B*a^3*b^3 +
11*A^4*a^2*b^4)*c^2 - 2*(B^4*a^5*b^2 - 6*A*B^3*a^4*b^3 + 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a^2*b^5 + 3*A^4*a*b^6)*
c)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(A^4*a^2*c^5 + 3*(A^3*B*a^2*b - A^4*a*b^2)*c^4 - (B^4*a^
4 - 5*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - A^3*B*a*b^3 - A^4*b^4)*c^3 + (B^4*a^3*b^2 - 3*A*B^3*a^2*b^3 + 3*A^2*B^
2*a*b^4 - A^3*B*b^5)*c^2)*x - sqrt(1/2)*(B^3*a^3*b^5 - 3*A*B^2*a^2*b^6 + 3*A^2*B*a*b^7 - A^3*b^8 - 4*A^3*a^4*c
^4 + (4*A*B^2*a^5 - 20*A^2*B*a^4*b + 17*A^3*a^3*b^2)*c^3 + (4*B^3*a^5*b - 25*A*B^2*a^4*b^2 + 41*A^2*B*a^3*b^3
- 20*A^3*a^2*b^4)*c^2 - (5*B^3*a^4*b^3 - 18*A*B^2*a^3*b^4 + 21*A^2*B*a^2*b^5 - 8*A^3*a*b^6)*c + (B*a^6*b^4 - A
*a^5*b^5 + 4*(2*B*a^8 - 3*A*a^7*b)*c^2 - (6*B*a^7*b^2 - 7*A*a^6*b^3)*c)*sqrt((B^4*a^4*b^4 - 4*A*B^3*a^3*b^5 +
6*A^2*B^2*a^2*b^6 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4*a^4*c^4 - 2*(A^2*B^2*a^5 - 4*A^3*B*a^4*b + 3*A^4*a^3*b^2)*c^
3 + (B^4*a^6 - 8*A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2 - 28*A^3*B*a^3*b^3 + 11*A^4*a^2*b^4)*c^2 - 2*(B^4*a^5*b^2 -
6*A*B^3*a^4*b^3 + 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a^2*b^5 + 3*A^4*a*b^6)*c)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(B^2*a
^2*b^3 - 2*A*B*a*b^4 + A^2*b^5 - (4*A*B*a^3 - 5*A^2*a^2*b)*c^2 - (3*B^2*a^3*b - 8*A*B*a^2*b^2 + 5*A^2*a*b^3)*c
 - (a^5*b^2 - 4*a^6*c)*sqrt((B^4*a^4*b^4 - 4*A*B^3*a^3*b^5 + 6*A^2*B^2*a^2*b^6 - 4*A^3*B*a*b^7 + A^4*b^8 + A^4
*a^4*c^4 - 2*(A^2*B^2*a^5 - 4*A^3*B*a^4*b + 3*A^4*a^3*b^2)*c^3 + (B^4*a^6 - 8*A*B^3*a^5*b + 24*A^2*B^2*a^4*b^2
 - 28*A^3*B*a^3*b^3 + 11*A^4*a^2*b^4)*c^2 - 2*(B^4*a^5*b^2 - 6*A*B^3*a^4*b^3 + 12*A^2*B^2*a^3*b^4 - 10*A^3*B*a
^2*b^5 + 3*A^4*a*b^6)*c)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) - 6*(B*a - A*b)*x^2 - 2*A*a)/(a^2*x^3)

________________________________________________________________________________________

Sympy [B]  time = 34.4356, size = 774, normalized size = 2.86 \begin{align*} \operatorname{RootSum}{\left (t^{4} \left (256 a^{7} c^{2} - 128 a^{6} b^{2} c + 16 a^{5} b^{4}\right ) + t^{2} \left (- 80 A^{2} a^{3} b c^{3} + 100 A^{2} a^{2} b^{3} c^{2} - 36 A^{2} a b^{5} c + 4 A^{2} b^{7} + 64 A B a^{4} c^{3} - 144 A B a^{3} b^{2} c^{2} + 64 A B a^{2} b^{4} c - 8 A B a b^{6} + 48 B^{2} a^{4} b c^{2} - 28 B^{2} a^{3} b^{3} c + 4 B^{2} a^{2} b^{5}\right ) + A^{4} c^{5} - 2 A^{3} B b c^{4} + 2 A^{2} B^{2} a c^{4} + A^{2} B^{2} b^{2} c^{3} - 2 A B^{3} a b c^{3} + B^{4} a^{2} c^{3}, \left ( t \mapsto t \log{\left (x + \frac{96 t^{3} A a^{7} b c^{2} - 56 t^{3} A a^{6} b^{3} c + 8 t^{3} A a^{5} b^{5} - 64 t^{3} B a^{8} c^{2} + 48 t^{3} B a^{7} b^{2} c - 8 t^{3} B a^{6} b^{4} + 4 t A^{3} a^{4} c^{4} - 32 t A^{3} a^{3} b^{2} c^{3} + 40 t A^{3} a^{2} b^{4} c^{2} - 16 t A^{3} a b^{6} c + 2 t A^{3} b^{8} + 42 t A^{2} B a^{4} b c^{3} - 84 t A^{2} B a^{3} b^{3} c^{2} + 42 t A^{2} B a^{2} b^{5} c - 6 t A^{2} B a b^{7} - 12 t A B^{2} a^{5} c^{3} + 54 t A B^{2} a^{4} b^{2} c^{2} - 36 t A B^{2} a^{3} b^{4} c + 6 t A B^{2} a^{2} b^{6} - 10 t B^{3} a^{5} b c^{2} + 10 t B^{3} a^{4} b^{3} c - 2 t B^{3} a^{3} b^{5}}{- A^{4} a^{2} c^{5} + 3 A^{4} a b^{2} c^{4} - A^{4} b^{4} c^{3} - 3 A^{3} B a^{2} b c^{4} - A^{3} B a b^{3} c^{3} + A^{3} B b^{5} c^{2} + 6 A^{2} B^{2} a^{2} b^{2} c^{3} - 3 A^{2} B^{2} a b^{4} c^{2} - 5 A B^{3} a^{3} b c^{3} + 3 A B^{3} a^{2} b^{3} c^{2} + B^{4} a^{4} c^{3} - B^{4} a^{3} b^{2} c^{2}} \right )} \right )\right )} - \frac{A a + x^{2} \left (- 3 A b + 3 B a\right )}{3 a^{2} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/x**4/(c*x**4+b*x**2+a),x)

[Out]

RootSum(_t**4*(256*a**7*c**2 - 128*a**6*b**2*c + 16*a**5*b**4) + _t**2*(-80*A**2*a**3*b*c**3 + 100*A**2*a**2*b
**3*c**2 - 36*A**2*a*b**5*c + 4*A**2*b**7 + 64*A*B*a**4*c**3 - 144*A*B*a**3*b**2*c**2 + 64*A*B*a**2*b**4*c - 8
*A*B*a*b**6 + 48*B**2*a**4*b*c**2 - 28*B**2*a**3*b**3*c + 4*B**2*a**2*b**5) + A**4*c**5 - 2*A**3*B*b*c**4 + 2*
A**2*B**2*a*c**4 + A**2*B**2*b**2*c**3 - 2*A*B**3*a*b*c**3 + B**4*a**2*c**3, Lambda(_t, _t*log(x + (96*_t**3*A
*a**7*b*c**2 - 56*_t**3*A*a**6*b**3*c + 8*_t**3*A*a**5*b**5 - 64*_t**3*B*a**8*c**2 + 48*_t**3*B*a**7*b**2*c -
8*_t**3*B*a**6*b**4 + 4*_t*A**3*a**4*c**4 - 32*_t*A**3*a**3*b**2*c**3 + 40*_t*A**3*a**2*b**4*c**2 - 16*_t*A**3
*a*b**6*c + 2*_t*A**3*b**8 + 42*_t*A**2*B*a**4*b*c**3 - 84*_t*A**2*B*a**3*b**3*c**2 + 42*_t*A**2*B*a**2*b**5*c
 - 6*_t*A**2*B*a*b**7 - 12*_t*A*B**2*a**5*c**3 + 54*_t*A*B**2*a**4*b**2*c**2 - 36*_t*A*B**2*a**3*b**4*c + 6*_t
*A*B**2*a**2*b**6 - 10*_t*B**3*a**5*b*c**2 + 10*_t*B**3*a**4*b**3*c - 2*_t*B**3*a**3*b**5)/(-A**4*a**2*c**5 +
3*A**4*a*b**2*c**4 - A**4*b**4*c**3 - 3*A**3*B*a**2*b*c**4 - A**3*B*a*b**3*c**3 + A**3*B*b**5*c**2 + 6*A**2*B*
*2*a**2*b**2*c**3 - 3*A**2*B**2*a*b**4*c**2 - 5*A*B**3*a**3*b*c**3 + 3*A*B**3*a**2*b**3*c**2 + B**4*a**4*c**3
- B**4*a**3*b**2*c**2)))) - (A*a + x**2*(-3*A*b + 3*B*a))/(3*a**2*x**3)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^4/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError